EscI: a crucial component of the type III secretion system forms the inner rod structure in enteropathogenic Escherichia coli.
نویسندگان
چکیده
The T3SS (type III secretion system) is a multi-protein complex that plays a central role in the virulence of many gram-negative bacterial pathogens. This apparatus spans both bacterial membranes and transports virulence factors from the bacterial cytoplasm into eukaryotic host cells. The T3SS exports substrates in a hierarchical and temporal manner. The first secreted substrates are the rod/needle proteins which are incorporated into the T3SS apparatus and are required for the secretion of later substrates, the translocators and effectors. In the present study, we provide evidence that rOrf8/EscI, a poorly characterized locus of enterocyte effacement-encoded protein, functions as the inner rod protein of the T3SS of EPEC (enteropathogenic Escherichia coli). We demonstrate that EscI is essential for type III secretion and is also secreted as an early substrate of the T3SS. We found that EscI interacts with EscU, the integral membrane protein that is linked to substrate specificity switching, implicating EscI in the substrate-switching event. Furthermore, we showed that EscI self-associates and interacts with the outer membrane secretin EscC, further supporting its function as an inner rod protein. Overall, the results of the present study suggest that EscI is the YscI/PrgJ/MxiI homologue in the T3SS of attaching and effacing pathogens.
منابع مشابه
EscA is a crucial component of the type III secretion system of enteropathogenic Escherichia coli.
The virulence of many Gram-negative pathogens is associated with type III secretion systems (T3SSs), which deliver virulence effector proteins into the cytoplasm of host cells. Components of enteropathogenic Escherichia coli (EPEC) T3SS are encoded within the locus of enterocyte effacement (LEE). While most LEE-encoded T3SS proteins in EPEC have assigned names and functions, a few of them remai...
متن کاملType Three Secretion System in Attaching and Effacing Pathogens
Enteropathogenic Escherichia coli and enterohemorrhagic E. coli are diarrheagenic bacterial human pathogens that cause severe gastroenteritis. These enteric pathotypes, together with the mouse pathogen Citrobacter rodentium, belong to the family of attaching and effacing pathogens that form a distinctive histological lesion in the intestinal epithelium. The virulence of these bacteria depends o...
متن کاملAssembly of the type III secretion apparatus of enteropathogenic Escherichia coli.
Enteropathogenic Escherichia coli (EPEC) secretes many Esps (E. coli-secreted proteins) and effectors via the type III secretion (TTS) system. We previously identified a novel needle complex (NC) composed of a basal body and a needle structure containing an expandable EspA sheath-like structure as a central part of the EPEC TTS apparatus. To further investigate the structure and protein compone...
متن کاملModulation of the Inflammasome Signaling Pathway by Enteropathogenic and Enterohemorrhagic Escherichia coli
Innate immunity is an essential component in the protection of a host against pathogens. Enteropathogenic and enterohemorrhagic Escherichia coli (EPEC and EHEC, respectively) are known to modulate the innate immune responses of infected cells. The interference is dependent on their type III secretion system (T3SS) and T3SS-dependent effector proteins. Furthermore, these cytosolically injected e...
متن کاملSupermolecular structure of the enteropathogenic Escherichia coli type III secretion system and its direct interaction with the EspA-sheath-like structure.
Enteropathogenic Escherichia coli (EPEC) secretes several Esp proteins via the type III secretion system (secreton). EspA, EspB, and EspD are required for translocation of the effector proteins into host cells, in which EspB and EspD are thought to form a pore in the host membrane. Recent study has shown that EspA forms a filamentous structure that assembles as a physical bridge between bacteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 442 1 شماره
صفحات -
تاریخ انتشار 2012